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Preparation of 3-substituted-2-pyridin-2-ylindoles:
regioselectivity of Larock’s indole annulation
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Abstract—A regioselective Larock approach to 3-substituted-2-pyridin-2-ylindoles from 2-alkynylpyridines and 2-iodoanilines is
described herein. The unexpectedly high regioselectivity can be rationalized by a combination of steric, coordinative and electronic
effects.
� 2007 Elsevier Ltd. All rights reserved.
I

N
H

R2

R2

X
Y

Z

+
Pd(0)

NH2R1

R1

R3

1 2

N
H

R2

Z
YX

R1 R3

X
Y

ZR3

3

4

Δ

Scheme 1. Larock indole annulation with ethynylpyridines.
The assembly of functionalized indoles, which are pres-
ent in scores of natural products and pharmaceutical
compounds,1 has captured the attention of synthetic
chemists, and is reflected by a large number of review
articles.2 Our interest in these compounds derived from
the need to develop a short and cost-efficient route to
3-substituted-2-pyridin-2-ylindoles which have been
identified as key synthetic intermediates in an ongoing
program.

The regioselective construction of 2,3-disubstituted
indoles remains challenging although lately several
elegant approaches have been developed,3 including
the palladium-catalyzed reaction of o-haloanilines with
internal alkynes,4 which is known as the Larock indole
annulation and appeared most appropriate for our
purposes (Scheme 1).5

Mechanistically, this reaction involves oxidative addi-
tion of Pd(0) to the aryl halide, usually the iodide, to
Pd(0), syn-insertion of the alkyne into the Ar–Pd bond,
nitrogen displacement of the halide at Pd in the resulting
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vinyl-Pd intermediate, and finally reductive elimination
of Pd(0).4 The annulation has been described as regio-
selective with unsymmetrical alkynes generally attaching
the aniline nitrogen moiety to the sterically more con-
gested carbon atom of the alkyne, so that alkyne inser-
tion occurs in a way to minimize steric strain in the
vicinity of the developing carbon–carbon bond, which
is shorter than the carbon–palladium bond.4

Early laboratory experiments demonstrated that the
ratio of regioisomeric indole products was significantly
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Table 1. Composition of product mixtures for the reaction 1+2!3+4a versus steric parameters and pyridyl pKa

Entry Alkyne 2 pKa
11 Molar ratio of 3:4b Yield 3+4c (%) A-value (ArR3)/A-value (R2)12

1
N a

2.77 94:6 94 2.97/1.67

2
N b

3.99 68:32 93 3.06/1.67

3 N
c

4.98 72:28 76 2.99/1.67

4
d

n/a 67:33 86 3.26/1.67

5 N
Me e

3.49 87:13 88 3.19/1.67

6 N
OMe f

0.93 80:20 84 2.93/1.67

7

N g
2.67 97:3 91 2.97/1.54

8
N h

2.57 31:69 78 2.97/4.69

9
N

MeO
i

1.76 41:59 56 2.97/3.24

10
N j

2.29 57:43 63 2.97/3.26

a All reactions were carried out on 1.5–3.0 mmol scale using 1.0 equiv 3-amino-4-iodobenzoic acid methyl ester 1a, 1.5 equiv alkyne, 0.05 equiv
Pd(OAc)2, 0.075 equiv dppf, and 5.0 equiv KOAc in 50 vol NMP at 140 �C, and monitored by HPLC.13

b Determined by 1H NMR integration.
c Isolated yield after column chromatography.
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higher for 2-cyclopentylethynylpyridine (2a; Table 1,
entry 1) than for cyclopentylethynylbenzene (2d, entry
4) and could therefore not be rationalized by steric dif-
ferences between the acetylenic substituents. This
intriguing observation, coupled with the absence of
published studies describing the use of alkynylpyridines
in Larock’s indole annulation, prompted us to initiate a
systematic investigation probing the influence of
steric and electronic factors on the regioselectivity
of the Larock indole annulation with selected
alkynylpyridines.

We arrived at a suitable set of reaction conditions for
the Larock reaction of a selected 2-iodoaniline 16 and
a 2-alkynylpyridine (2, X = N, Y = Z = CH; Scheme
1), optimized with respect to reaction rate, conversion,
ratio of regioisomeric indoles 3 and 4 (with 3 being
desired), and suppression of impurities derived from
multiple alkyne insertion7 and aniline dimerization.8 It
should be noted that while the palladium source and
nature of the ligand affected the reaction rate consider-
ably, they did not influence the regioselectivity. There-
fore, all reactions were carried out using 1.5–3.0 mmol
of aniline, 1.5 equiv of alkyne, 0.05 equiv of Pd(OAc)2,
0.075 equiv of dppf and 5.0 equiv of KOAc in 50 mL
of NMP per gram of aniline at 140 �C.

With these reactions conditions in hand, we embarked
on the study of steric and electronic influences of
alkynylpyridines on the regioselectivity of Larock’s
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Scheme 2. Proposed mechanism of Larock’s indolization with 2-
alkynylpyridines.
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indole annulation. Thus, 3-amino-4-iodobenzoic acid
methyl ester (1a; R1 = CO2Me)9 was reacted with disub-
stituted acetylenes 2a–j, and the ratio and yield of the
regioisomeric products 3 and 4 were determined (Table
1).10 To qualitatively assess the influence of steric bulk
of the acetylenic substituents, the A-values of these
groups were determined by computational studies.12

Entries 1–4 provide results in accordance with Larock’s
observation in that the sterically bulkier acetylenic sub-
stituent favors its placement at C-2 of the resulting
indole.4 However, while acetylenes 2a–d carry substitu-
ents with similar respective A-values, 2-cyclopentylethy-
nylpyridine (2a) provided a significantly higher ratio of
regioisomeric indoles 3 and 4 (94:6) compared to 2b–d
(ca. 69:31). It became apparent that the pyridin-2-yl
moiety played an important role in this unexpected
enhancement of regioselectivity favoring pyridin-2-yl-
indoles 3. This was further supported by entries 9 and
10, in which a ca. 50:50 ratio of indoles 3 and 4 would
have been anticipated based on the A-values of the
acetylenic substituents. These entries also suggest a role
for mesomeric effects which needs to be studied further.
However, the fact that sterics are still a significant com-
ponent with respect to regioselectivity in the Larock ind-
olization was supported by entry 8, as the large steric
bulk of the tert-butyl group overrode the electronic
effect of the pyridin-2-yl group favoring production of
3-pyridin-2-ylindole 4h by 69 to 31. In general, however,
introduction of the pyridin-2-yl substituent significantly
favored 2-pyridin-2-ylindoles 3 over 3-pyridin-2-yl-
indoles 4. It became apparent that we were dealing with
a complex overlap of steric and electronic effects.

Clearly, only 2-alkynylpyridines exhibit a behavior that
deviates from a sterically-driven reaction. Their effect
may be due to electronic effects (mesomeric or inductive)
or to coordination of Pd by the pyridin-2-yl nitrogen
lone pair at some point of the catalytic cycle. To probe
the latter possibility, we examined the relationship of the
pyridinyl pKa of the alkynes with the observed regio-
selectivity. The calculated pKa values11 are shown in
Table 1. Without the possibility of p-backbonding from
the Pd to the pyridinyl moiety, a good correlation
between r-donicity and pKa can be assumed.14 In gen-
eral, higher basicity at nitrogen, that is, increasing
r-donicity of the pyridinyl nitrogen towards palla-
dium,15 furnished enhanced regioselectivity in favor of
2-pyridin-2-yl indoles 3 (see entries 5 vs 6 and 10 vs 9).
But this trend does not hold through the series (entry
1 vs 5), indicating that steric effects must play a role in
the annulation with 2-cyclopentylethynyl-6-methylpyri-
dine (2e), because the 2,6-disubstituted pyridines may
have more difficulty in coordinating the Pd center. Since
the pKa effect goes against it, this particular steric effect
must be considerable.

In an attempt to rationalize the role of the pyridin-2-yl
substituent, the mechanism shown in Scheme 2 is postu-
lated.4 The pyridine moiety, which is known to act as a
ligand for palladium, favors syn-insertion of the arylpal-
ladium complex in a way to maintain coordination of
palladium to the pyridyl nitrogen via a four-member
ring (6!7). This coordination effect appears insignifi-
cant for pyridin-3-yl and pyridin-4-yl moieties.

In summary, while steric effects are an important factor
in governing the regiochemical outcome of Larock’s
indole annulation with 2-alkynylpyridines, the influence
of the pyridin-2-yl nitrogen was also found to be signi-
ficant and did correlate to some extent with its pKa.
The relative steric bulk and strong r-donicity of the
pyridin-2-yl moiety act in synergy to provide high regio-
selectivity favoring 2-pyridin-2-ylindoles 3 over 3-pyr-
idin-2-ylindoles 4 observed in this study. This could
render the Larock annulation to 2-pyridin-2-ylindoles
an attractive synthetic protocol.
Experimental

Representative procedure for the Larock’s indole annula-
tion: To a 100 mL three-necked flask equipped with a
magnetic stirrer, internal thermocouple, condenser and
argon inlet, was added, at room temperature, the disub-
situted alkyne (3.61 mmol), palladium(II) acetate
(20.7 mg, 0.090 mmol), 1,1 0-bis(diphenylphosphino)-
ferrocene (75.8 mg, 0.135 mmol), potassium acetate
(887 mg, 9.03 mmol), the 2-haloaniline (1.81 mmol),
followed by anhydrous NMP (25 mL). The resulting
dark mixture was heated at 140 �C until completion of
reaction was determined by HPLC. Typically, the reac-
tions completed within 1 h. The mixture was cooled to
room temperature, filtered through a pad of Celite�

which was rinsed with EtOAc (ca. 150 mL). Water
(100 mL) was added and the two layers were separated.
The aqueous phase was washed with EtOAc (1 ·
100 mL). The organic layers were combined, washed
with water, dried (MgSO4) and concentrated to give
generally a brown oil, which was purified by flash
column chromatography (silica gel, 70–230 mesh,
60 Å) using hexane–EtOAc (10:1 to remove excess
acetylene, then 5:1).
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